skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jia, Mian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As electric vehicles (EVs) gradually replace fuel vehicles and provide transportation services in cities, e.g., electric taxi fleets, solar-powered charging stations with energy storage systems have been deployed to provide charging services for EV fleets. The mixture of solar-powered and traditional charging stations brings efficiency challenges to charging stations and reliability challenges to power systems. In this article, we explore e-taxis’ mobility and charging demand flexibility to co-optimize service quality of e-taxi fleets and system cost of charging infrastructures, e.g., solar power under-utilization and reliability issues of power distribution networks due to reverse power flow. We propose SAC, an e-taxi coordination framework to dispatch e-taxis for charging or serving passengers under spatial-temporal dynamics of renewable energy and passenger mobility, which integrates the renewable power generation estimation from a forecast system. Moreover, we extend our design to a stochastic Model Predictive Control problem to handle the uncertainty of solar power generation, aiming to fully utilize generated solar power. Our data-driven evaluation shows that SAC significantly outperforms existing solutions, enhancing the usage rate of solar power by up to 172.6%, while maintaining e-taxi service quality with very small overhead, i.e., reducing the supply-demand ratio by 2.2%. 
    more » « less
    Free, publicly-accessible full text available October 31, 2026
  2. Free, publicly-accessible full text available September 1, 2026
  3. Multichannel coupling in hybrid systems makes an attractive testbed not only because of the distinct advantages entailed by each constituent mode but also because the opportunity to leverage interference among the various excitation pathways. Here, via combined analytical calculation and experiment, we demonstrate that the phase of the magnetization precession at the interface of a coupled yttrium iron garnet (YIG)/permalloy (Py) bilayer is collectively controlled by the microwave photon field torque and the interlayer exchange torque, manifesting a coherent, dual-channel excitation scheme that effectively tunes the magneto-optical spectrum. The different torque contributions vary with frequency, external bias field, and type of interlayer coupling between YIG and Py, which further results in destructive or constructive interferences between the two excitation channels, and hence selective suppression or amplification of the hybridized magnon modes. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026